证明 四个连续奇数的乘积减去一,必能被八整除
人气:398 ℃ 时间:2019-09-21 06:49:33
解答
设这四个奇数为 2n-3,2n-1,2n+1,2n+3
则他们的积减1为
(2n-3)(2n-1)(2n+1)(2n+3)-1
=(2n-3)(2n+3)(2n-1)(2n+1)-1
=(4n^2-9)(4n^2-1)-1
=16n^4-40n^2+8
=8(2n^4-5n^2+1)
所以四个连续奇数的乘积减去一,必能被八整除
加油啊!好好努力!
推荐
- 证明连续四个奇数减一能被八整除
- 证明:三个相邻奇数的乘积一定能被3整除.
- 证明:三个相邻奇数的乘积一定能被3整除.
- 证明:4个连续奇数的积减1能被8整除
- 1*3*5*7-1=104=8*13,3*5*7*9-1=944=8*118……试证:四个连续奇数的乘积减去1的差,必定能被8整除.
- 如图,在△ABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E.已知AB=10,BC=8,AC=6,求△AED的周长
- 如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( ) A.右转80° B.左转80° C.右转100° D.左转100°
- 运用辨证唯物论知识说明,中国人的航天梦想能逐步实现的原因.
猜你喜欢