证明 四个连续奇数的乘积减去一,必能被八整除
人气:267 ℃ 时间:2019-09-21 06:49:33
解答
设这四个奇数为 2n-3,2n-1,2n+1,2n+3
则他们的积减1为
(2n-3)(2n-1)(2n+1)(2n+3)-1
=(2n-3)(2n+3)(2n-1)(2n+1)-1
=(4n^2-9)(4n^2-1)-1
=16n^4-40n^2+8
=8(2n^4-5n^2+1)
所以四个连续奇数的乘积减去一,必能被八整除
加油啊!好好努力!
推荐
猜你喜欢
- He felt ---at the news that he failed the exam A.frustrating B.rustration C.rustrated D.rustrate
- 如何画英语脑图
- 用所给词的适当形式填空,1,Tom's (.result)of the English exam is pretty good.
- 孩子挤出来(改成比喻句)
- 2x的平方-3y-2(x的平方-2y)
- 一道简单的物理题(质点运动)
- 甲,乙两地相距162千米,一列慢车从甲站出发,每小时走48千米,一列快车从乙站开出,每小时走60千米,试问:1.两列火车同时相向而行,多长时间可以相遇?2.两车同时反向而行,几小时后两车相距270千米?3.若两车相向而行,慢车先开出1小时,
- Look!That woman looks like our teacher .we are going to put it on the day after tomorrow.