正四面体ABCD内接于半径为R的球,求正四面体的棱长.
人气:440 ℃ 时间:2020-02-03 18:03:05
解答
球心O在高线DE上,OA=OD=OB=OC=R,设正四面体的棱长为a,
则AE= √3a/3,DE= √6/3a,
在直角三角形AOE中,AO2=OE2+AE2,且AO+OE= √6/3a
解得a= 2/3√6AO= 2/3√6R
故答案为:2/3√6R.
推荐
猜你喜欢
- 对别人诉说心中的不满是什么成语
- {an}是等比数列,a5=2S4+7,a6=2S5+7,则公比q的值为?
- l'm ___ to see the doctor (go) 用正确形式填空
- 厦门的诗句有哪些
- 如图所示,一子弹以水平速度射入放置在光滑水平面上原来静止的木块,并留在木块中,在此过程中子弹钻入木块的深度为d,木块的位移为s,木块对子弹的摩擦力大小为F,则木块对子弹的
- 把“黑,白,绿,红,碧,黄,青,紫”这几个字分别填在下面的诗句中.
- 我国现行的个人所得税发自2011 9 1若甲每月的工资额
- 发闾左谪戍渔阳九百人解释