√(a+1/2)+√(b+1/2)
=√(a+1/2)+√(3/2-a)=t>0,0<=a<=1
t^2=2+2√(-a^2+a+3/4)
=2+2√[-(a-1/2)^2+1]
a=1/2
t^2max=4,tmax=2
a=0或a=1,t^2min=2+√3,tmin=(√6+√2)/2
√(a+1/2)+√(b+1/2)的取值范围为
∈[(√6+√2)/2,2]请问可以用基本不等式做吗当a≥0,b≥0时,√[(a²+b²)/2]≥(a+b)/2,当a=b时取到等号。√(a+1/2) +√(b+1/2)≤2√[(a+1/2+b+1/2)/2]=2√1=2当a≥0,b≥0时,a+b≥2√(ab),当a=b时取到等号。令t=√(a+1/2) +√(b+1/2),t>0。t²=a+b+1+2√(ab+1/2a+1/2b+1/4)=3/2+2√(ab+3/4)又因为ab≥0,当a=0,b=1。或者a=1,b=0时取到最小.所以t²≥3/2+2√(3/4)即t≥√[3/2+2√(3/4)]=(√6+√2)/2综上:√a+1/2 +√b+1/2的取值范围:[(√6+√2)/2,2]太感谢了!!!谢谢:-P