如图1,Rt△ABC≌Rt△EDF,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k
人气:221 ℃ 时间:2019-08-21 18:50:03
解答
CDF=15°,
详解如下:由(2),得GM=AM,GK=CK,
∵MK^2+CK^2=AM^2,
∴MK^2+GK^2=GM^2,
∴∠GKM=90°,
又∵点C关于FD的对称点G,
∴∠CKG=90°,∠FKC=1/2∠CKG=45°,
又有(1),得∠A=∠ACD=30°,
∴∠FKC=∠CDF+∠ACD,
∴∠CDF=∠FKC-∠ACD=15°,
在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°,
∴∠GMK=30°,
∴ MK/GM= (√3)/2,
∴ MK/AM= (√3)/2.
推荐
- 如图 Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的终点D旋转,ED,DF分别交线段AC于点M、k.如果MK²+CK²=AM²,写出∠CDF的度数和MK/AM的值
- 已知,如图,在△ABC中,AB=AC,DE//BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE
- 如图,△ABC中,AB=AC,D为BC上一点,DE⊥AB于点E,DF⊥BC,交AC于点F,∠A=56°,求∠EDF的度数.
- 如图,在等边△ABC中,AB=4,点D是AB中点,过D作射线DE、DF使角EDF=60°,射线DF与AC边交与点F(点F不与点A重合),射线DE与BC的延长线交于点E.
- 在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠EAF=180°,求证DE=DF.
- 要“评估练习七 燃料及其利用”和“评估练习八 金属和金属材料”以及“评估练习九 溶液”三部分
- 一个圆柱体的侧面积是12.56平方厘米,底面半径是2厘米,它的高是_厘米.
- 用 一元一次的方程解 要清晰的解题过程
猜你喜欢