设椭圆的右焦点为F',连接AF'、BF'∵AB与FF'互相平分,∴四边形AFBF'为平行四边形,可得|AF|=|BF'|=6
∵△ABF中,|AB|=10,|AF|=6,cos∠ABF=
| 4 |
| 5 |
∴由余弦定理|AF|2=|AB|2+|BF|2-2|AB|×|BF|cos∠ABF,
可得62=102+|BF|2-2×10×|BF|×
| 4 |
| 5 |
由此可得,2a=|BF|+|BF'|=14,得a=7
∵△ABF中,|AF|2+|BF|2=100=|AB|2
∴∠AFB=90°,可得|OF|=
| 1 |
| 2 |
因此,椭圆C的离心率e=
| c |
| a |
| 5 |
| 7 |
故答案为:
| 5 |
| 7 |
