∵△ABC是等边三角形,∠ADE=60°,∴∠B=∠C=∠ADE=60°,AB=BC,
∵∠ADB=∠DAC+∠C,∠DEC=∠ADE+∠DAC,
∴∠ADB=∠DEC,
∴△ABD∽△DCE,
∴
| AB |
| DC |
| BD |
| CE |
∵BD=4,CE=
| 4 |
| 3 |
设AB=x,则DC=x-4,
∴
| x |
| x−4 |
| 4 | ||
|
∴x=6,
∴AB=6,
过点A作AF⊥BC于F,
在Rt△ABF中,AF=AB•sin60°=6×
| ||
| 2 |
| 3 |
∴S△ABC=
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 3 |
故选C.
| 4 |
| 3 |
A. 8| 3 |
| 3 |
| 3 |
∵△ABC是等边三角形,∠ADE=60°,| AB |
| DC |
| BD |
| CE |
| 4 |
| 3 |
| x |
| x−4 |
| 4 | ||
|
| ||
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 3 |