> 数学 >
已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.
(1)求B点坐标;
(2)设运动时间为t秒;
①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;
②当t为何值时,四边形OAMN的面积最小,并求出最小面积;
③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN的长度也刚好最小,求动点P的速度.
人气:399 ℃ 时间:2020-03-17 23:14:37
解答
(1)作BD⊥OC于D,
则四边形OABD是矩形,
∴OD=AB=10,
∴CD=OC-OD=12,
∴OA=BD=
BC2-CD2
=9,
∴B(10,9);
(2)①由题意知:AM=t,ON=OC-CN=22-2t,
∵四边形OAMN的面积是梯形OABC面积的一半,
1
2
(t+22-2t)×9=
1
2
×
1
2
(10+22)×9

∴t=6,
②设四边形OAMN的面积为S,则s=
1
2
(t+22-2t)×9=-
9
2
t+99

∵0<t≤10,且s随t的增大而减小,
∴当t=10时,s最小,最小面积为54.
③如备用图,取N点关于y轴的对称点N′,连接MN′交AO于点P,
此时PM+PN=PM+PN′=MN′长度最小.
当t=10时,AM=t=10=AB,ON=22-2t=2,
∴M(10,9),N(2,0),
∴N′(-2,0);
设直线MN′的函数关系式为y=kx+b,则
10k+b=9
-2k+b=0

解得
k=
3
4
b=
3
2

∴P(0,
3
2
),
∴AP=OA-OP=
15
2

∴动点P的速度为
15
2
÷10=
3
4
个单位长度/秒.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版