对于定义域为D的函数y=f(x) ,若同时满足下列条件:
① f(x)在D内单调递增或单调递减;②存在区间[ a,b]属于D ,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x属于D)叫闭函数.
(1)求闭函数y=-x^3 符合条件②的区间[a,b];
(2)判断函数f(x)=(3/4)x+1/x (x大于0)是否为闭函数?并说明理由;
(3)若y=k+根号(x+2) 是闭函数,求实数k 的取值范围.
人气:381 ℃ 时间:2020-09-11 11:28:18
解答
(1)显然函数y=-x^3在R上是减函数.
故区间[a,b]满足:
a<b
-a^3=b
-b^3=a
解得
a=-1 b=1
∴ [a,b]=[-1,1].
(2) 函数y=2x-lgx的定义域为(0,+∞),
取x=0.01,则y=2.02;
取x=1,则y=2;
取x=10,则y=19;
故函数不是单调递增或单调递减函数.
∴ 函数y=2x-lgx不是闭函数.
(3)函数y=k+ 根号内(x+2)是单调递增函数.若存在区间[a,b] ∈(-2,+∞ ) 符合条件(2),
则
a<b
k+根号内(a+2)=a
k+根号内(b+2)=a
有解.
即方程k+根号内(x+2)=x 有两个不相同的解.
即方程x^2-(2k+1)x+k^2-2=0 有两个不相同的不小于K的解.
∴△>0
k^2-(2k+1)k+k^2-2≥0
(2k+1)/2>1
解得- 9/4<k≤-2 ,
∴ 实数k的取值范围为- 9/4<k≤-2 .
推荐
- 设f(x)是定义在区间[-6,11]上的函数,如果f(x) 在区间[-6,-2]上递减.在区间[-2,11]上递增,画出f(x)的大致图像,从图像可以发现f(-2)是函数f(x)上的一个----------.
- 1.函数y=3x^2+6x-12在区间()上为增函数,在区间()上为减函数
- 1.当锐角θ取何值时,(1+根号3)sin2θ+(1-根号3)cos2θ有最大值,并求出这个最大值
- 1.y=1/x的单调增区间是()
- 急 一直
- be和is,am ,are的分别用法(高分追加)
- in a way,on the way,in the way和by the
- 一块长90米,宽60米的土地上要栽树,按行距与行距都是3米计算,大约能栽多少棵树?土地边上不栽树)
猜你喜欢