a,b∈(3pi/4,pi),sin(a+b)=-3/5,sin(b-pi/4)=12/13,则cos(a+pi/4)=
人气:432 ℃ 时间:2020-04-16 13:43:30
解答
解cos(a+π/4)
=cos[(a+b)-(b-π/4)]
=cos(a+b)cos(b-π/4)+sin(a+b)sin(b-π/4)
由a,b∈(3pi/4,pi),sin(a+b)=-3/5,sin(b-pi/4)=12/13
知a+b属于(3π/2,2π),b-π/4属于(π/2,3π/4)
cos(a+b)=4/5,cos(b-π/4)=5/13
故
cos(a+π/4)
=cos[(a+b)-(b-π/4)]
=cos(a+b)cos(b-π/4)+sin(a+b)sin(b-π/4)
=4/5*5/13+(-3/5)*(12/13)
=20/65-36/65
=-16/65
推荐
- 已知a,b,属于(3pi/4,pi),sin(a+b)=-3/5,sin(b-pi/4)=12/13,则cos(a+pi/4)=?
- cos(pi/4-a)=3/5 sin(3pi/4+b)=5/13 求sin(a+b)
- (全题)已知sin(α+3pi/4)=5/13,cos(pi/4-β)=3/5,且-4/pi小于α小于pi/4,pi/4小于β小于3pi/4,求cos2(α-β)?
- sin(PI/2+a)=-4/5 a属于(Pi,3pi/2)则cos(Pi/3-a)为
- cos(pi/4-a)=1/7,sin(3pi/4+b)=11/14
- 1/13的分子和分母同时加上_后就可以约分为1/3.
- 以AB线段为底边的等腰三角形,它两底角平分线交点的轨迹是什么?
- 求歪歪接待词~^^~
猜你喜欢