| 1 |
| 5 |
| 8 |
| 5 |
| 1 |
| 5 |
| 16 |
| 5 |
∴抛物线y=-
| 1 |
| 5 |
| 8 |
| 5 |
| 16 |
| 5 |
(2)令y=0,得:
-
| 1 |
| 5 |
| 8 |
| 5 |
解得:x1=0,x2=8
∴球飞行的最大水平距离是8m.

(3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10m
∴抛物线的对称轴为直线x=5,顶点为(5,
| 16 |
| 5 |
设此时对应的抛物线解析式为y=a(x-5)2+
| 16 |
| 5 |
又∵点(0,0)在此抛物线上,
∴25a+
| 16 |
| 5 |
| 16 |
| 125 |
∴y=-
| 16 |
| 125 |
| 16 |
| 5 |
即y=-
| 16 |
| 125 |
| 32 |
| 25 |
| 1 |
| 5 |
| 8 |
| 5 |
m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.| 1 |
| 5 |
| 8 |
| 5 |
| 1 |
| 5 |
| 16 |
| 5 |
| 1 |
| 5 |
| 8 |
| 5 |
| 16 |
| 5 |
| 1 |
| 5 |
| 8 |
| 5 |

| 16 |
| 5 |
| 16 |
| 5 |
| 16 |
| 5 |
| 16 |
| 125 |
| 16 |
| 125 |
| 16 |
| 5 |
| 16 |
| 125 |
| 32 |
| 25 |