在平面直角坐标系中,直线y=-2x+5上有一系列点:P
0(1,3),P
1(x
1,y
1),P
2(x
2,y
2),…,P
n(x
n,y
n),….已知数列
{}(n∈N
*)是首项为
,公差为1的等差数列.
(1)求数列{x
n}(n∈N
*)和数列{y
n}(n∈N
*)的通项公式;
(2)是否存在一个半径最小的圆C,使得对于一切n∈N,点P
n(x
n,y
n)均在此圆内部(包括圆周)?若存在,求出此圆的方程;若不存在,请说明理由.
(1)∵数列{1xn−1}(n∈N*)是首项为12,公差为1的等差数列,∴1xn−1=12+(n−1)=2n−12∴xn=2n+12n−1∴yn=−2×2n+12n−1+5=6n−72n−1;(2)∵对任意n有xn=1+22n−1∈(1,3]∴显然存在这样的圆,它的一...