一道关于连续函数的高数题,
设函数f(x)在[0,2π]上连续,且f(0)=f(2π),证明在[0,π]上至少存在一点ξ,使得f(ξ)=f(ξ+π)
人气:471 ℃ 时间:2020-10-01 07:30:31
解答
要证明存在ξ∈[0,π],使f(ξ)-f(ξ+π)=0
为此令F(x)=f(x)-f(x+π),x∈[0,π]
则由f(0)=f(2π)得
F(π)=f(π)-f(2π)=f(π)-f(0)=-F(0)
若F(0)=0,则存在ξ=0∈[0,π),使f(ξ)-f(ξ+π)=F(0)=0
若F(0)≠0,则F(0)*F(π)=-F^2(0)
推荐
猜你喜欢
- 用mathematica求解如下二阶微分方程的数值解 输出最终的数值解并画图
- 如果幂函数f(x)=xa的图象经过点(2,22),则f(4)=_.
- 计算(5分之2x的立方-7x的平方+3分之2x)除以3分之2的结果是()
- 用u,e,r,t,t,b,l,f,y,组成一个单词
- 关于x的方程1/x-3+k/x+3=3+k/x²-9,则k的取值范围是k>0或k<-1,且k≠3 .
- 帮我化简两个三角函数式子,..
- 两个数之和为445,大数除以小数等于4,余数为45,请问这两个数是多少?
- 形容五官美的语句