在平面直角坐标系xOy中,点P到两点(0、-根号3)(0,根号3)的距离之和等于4,设点P的轨迹方程为C
人气:490 ℃ 时间:2019-08-20 16:54:45
解答
(Ⅰ)由题意,根据椭圆的定义可知
点P满足椭圆的定义,所以轨迹C是个椭圆,且焦点在Y轴上
焦距为2√3(即2c=2√3,c=√3) 长轴长4(即2a=4,a=2) 从而短轴长2(即2b=2,b=1)
所以轨迹C的方程为 x²+y²/4=1
(Ⅱ)设A(x1,y1) B(x2,y2)
将y=kx+1带入 x²+y²/4=1 中,化简得 (k²+4)x²+2kx-3=0
由韦达定理 可知 x1+x2= - 2k/ (k²+4) x1*x2= -3/ (k²+4)
因为A、B在直线y=kx+1上,满足直线方程,有y1=kx1+1,y2=kx2+1
所以y1*y2=(kx1+1)*(kx2+1)=k²x1x2+k(x1+x2)+1=(4-4k²)/(k²+4)
要想 OA⊥OB 则 x1x2+y1y2=0 (向量垂直,则数量积为零,数量积用坐标表示就是对应坐标乘积之和)
∴-3/ (k²+4)+(4-4k²)/(k²+4)=0 解得 k=±(1/2)
|AB|=√(1+k²)[(x1+x2)²-4x1x2]=(4√65)/17
推荐
- 在平面直角坐标系中,点P到两点(0,-根号3)(0,根号3)的距离之和等于4,设点P的轨迹为C ,直线y=kx+1与C交于A,B两点
- 在平面直角坐标系中,点P到两点(0,-根号3)(0,根号3)的距离之和等于4,设点P的轨迹为C ,直线y=kx+1与C交于A,B两点,若点A在第一象限,证明:当k>0时,恒有向量OA的绝对值>向量OB的绝对值
- 在平面直角坐标系中,点P到两点(0,-根号3)(0,根号3)的距离之和等于4,设点P的轨迹为C,y=kx+1与c交于A、B.
- 在平面直角坐标系中,点P到两点(0,-根号3)(0,根号3)的距离之和等于4,设点P的轨迹为C (1
- 在平面直角坐标系xoy中,点p到两点(0,根号3)(0,负根号3)的距离之和为4,设点p的轨迹为C
- Can you say it a.i don't hear it clearly a后面写什么?
- 在等比数列{an}中,a2=-3,a5=36,则a8的值为( ) A.-432 B.432 C.-216 D.以上都不对
- ---Excuse me,but I don’t think you can take photos here.
猜你喜欢