证明函数的单调性
函数f(x)对任意的a,b属于R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.
求证:f(x)是R上的增函数
实在做不出来了,求大神帮忙.谢谢!
人气:344 ℃ 时间:2020-04-03 10:03:59
解答
设x1、x2为R上的任意两个数,且x1<x2f(x2)-f(x1)=f(x2-x1+x1)-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1因为x2-x1>0,且当x>0时,f(x)>1所以f(x2-x1)-1>0,即f(x2)>f(x1)于是,当x1<x2时,f(x1)<f(x2)所以f(x)是R...f(x2-x1+x1)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1
推荐
猜你喜欢
- 学校美术作品展中,有50幅水彩画,60幅蜡笔画,蜡笔画比水彩画多百分之几?
- 已知集合M=(1,2,3,4,5,6,7,8,9,),集合P满足:P⊆M,且若a∈P,则10-a∈P,这样的集合P有几个
- 16的x次方 乘 4的4次方=2的14次方 求x
- 现在要赏金20 if we go by car,we must know the t( )r( )的括号应该填什么
- 一个长方体的长宽高分别是a.b.h,如果高增高3米,那么表面积比原来增加多少平方米?
- 英语翻译
- 敬畏生命文中描写白色纤维飘散情景的用意是什么?
- 真空可以传导热吗?