设三阶实对称矩阵A的特征值为-1,1,1.与特征值-1对应的特征向量X=(0,1,1),求
我就想问下 所得基础解系 a2=(1,0,0)^T,a3=(0,1,-1)^T.怎么来的 可不可以是(1,1,-1) (0,0,0)
人气:336 ℃ 时间:2020-02-06 04:33:41
解答
方程组为 x2+x3=0
x1,x2 视为自由未知量, 分别取 1,0 和 0,1 即得基础解系a2=(1,0,0)^T, a3=(0,1,-1)^T.
(1,1,-1)^T 是解
(0,0,0)^T 不行
基础解系必须线性无关
推荐
- 设三阶实对称矩阵A的特征值为-1,1,1.与特征值-1对应的特征向量X=(-1,1,1),求A
- 设3阶实对称矩阵A的特征值为-1,1,1,-1对应的特征向量为(0,1,1)的转置,求A.
- 已知3阶实对称矩阵A的3个特征值为1,-1,0,以及1,-1对应的特征向量如何求A.
- 设三阶实对称矩阵A的特征值为1,1,-1且对应的特征值1的特征向量有(1,1,1),(2,2,1),求矩阵A
- 3阶实对称矩阵A的三个特征值为2,5,5,A的属于特征值2的特征向量是(1,1,1)
- 2.37的立方根是1.333 23.7的立方根是2.872 那0.0237的立方根是多少?
- 城市化步伐的快速发展,使得生活节奏加快.生活水平的不断提高,家庭庭院也更多的出现在现代人的生活之中.庭院的设计五花八门,由于种种原因,往往缺乏合理的环境设计, 缺乏景观植物的种植设计,致使庭院环境不甚理想.如何改变这种尴尬局面,合理布置有限
- 英语翻译
猜你喜欢