证明:过E点作EH垂直AC交AC于H,连接BD,交AC于O点,在正方形ABCD中,AC⊥BD,AC=BD,OB=
| 1 |
| 2 |
| 1 |
| 2 |
又∵四边形AEFC是菱形,
∴AC=CF,AC∥EF,
∵EH⊥AC,
∴∠BOH=∠OHE=∠OBE=90°,
∴四边形BEHO是矩形,
∴EH=OB,
∴EH=
| 1 |
| 2 |
| 1 |
| 2 |
在直角三角形AHE中,
sin∠EAH=
| HE |
| AE |
| 1 |
| 2 |
故∠EAH=30°,即∠EAB=∠CAB-∠EAH=45°-30°=15°.

证明:过E点作EH垂直AC交AC于H,连接BD,交AC于O点,| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| HE |
| AE |
| 1 |
| 2 |