2
| ||
| 2Sn−1 |
整理得:Sn-1-Sn=2Sn⋅Sn-1,
由题意知Sn≠0,
∴
| 1 |
| Sn |
| 1 |
| Sn−1 |
即{
| 1 |
| Sn |
| 1 |
| S1 |
| 1 |
| a1 |
(2)∵{
| 1 |
| Sn |
| 1 |
| S1 |
| 1 |
| a1 |
∴
| 1 |
| Sn |
∴Sn=
| 1 |
| 2n−1 |
当n≥2时,an=Sn−Sn−1=
| 1 |
| 2n−1 |
| 1 |
| 2(n−1)−1 |
| 2 |
| (2n−1)(2n−3) |
当n=1时,a1=S1=1不满足an,
∴an=
|
| 2Sn2 |
| 2Sn−1 |
| 1 |
| Sn |
2
| ||
| 2Sn−1 |
| 1 |
| Sn |
| 1 |
| Sn−1 |
| 1 |
| Sn |
| 1 |
| S1 |
| 1 |
| a1 |
| 1 |
| Sn |
| 1 |
| S1 |
| 1 |
| a1 |
| 1 |
| Sn |
| 1 |
| 2n−1 |
| 1 |
| 2n−1 |
| 1 |
| 2(n−1)−1 |
| 2 |
| (2n−1)(2n−3) |
|