2
| ||
2Sn−1 |
整理得:Sn-1-Sn=2Sn⋅Sn-1,
由题意知Sn≠0,
∴
1 |
Sn |
1 |
Sn−1 |
即{
1 |
Sn |
1 |
S1 |
1 |
a1 |
(2)∵{
1 |
Sn |
1 |
S1 |
1 |
a1 |
∴
1 |
Sn |
∴Sn=
1 |
2n−1 |
当n≥2时,an=Sn−Sn−1=
1 |
2n−1 |
1 |
2(n−1)−1 |
2 |
(2n−1)(2n−3) |
当n=1时,a1=S1=1不满足an,
∴an=
|
2Sn2 |
2Sn−1 |
1 |
Sn |
2
| ||
2Sn−1 |
1 |
Sn |
1 |
Sn−1 |
1 |
Sn |
1 |
S1 |
1 |
a1 |
1 |
Sn |
1 |
S1 |
1 |
a1 |
1 |
Sn |
1 |
2n−1 |
1 |
2n−1 |
1 |
2(n−1)−1 |
2 |
(2n−1)(2n−3) |
|