设向量a=(a1,a2),向量b=(b1,b2),定义一种向量积:向量a*向量b=(a1,a2)*(b1,b2)=(a1b1,a2b2).
已知向量m=(2,1/2),向量n=(π/3,0),点P(x,y)在y=sinx的图像上运动,点Q在y=f(x)的图像上运动,满足向量OQ=向量m*向量OP+向量n(其中O为坐标原点),则y=f(x)的最大值A及最小正周期T分别为?
人气:307 ℃ 时间:2019-11-15 19:03:45
解答
向量OP=(x,sinx)
向量OQ=向量m*向量OP+向量n
=(2x+Pi/3,1/2sinx)
Q点坐标(2x+Pi/3,1/2sinx)
Q点轨迹y=1/2sin(x/2-Pi/6)
最大值A=1/2,最小正周期T=4Pi
推荐
猜你喜欢
- l am not good at piaying basketball.(同义句)l ____ ____ ____ ____ playing basketball.
- 在三角形ABC中,角C=60度,高BE经过高AD的中点F,BE=10CM,求BF,EF的长
- 用炭粉在高温条件下还原CuO的缺点,说全面点.
- 在每个工序中确定加工表面尺寸和位置度所依据的基准是什么?
- 血红蛋白分子中含有574个氨基酸,4条肽链,在形成次蛋白质分子是,脱下的分子数和含有-NH2的数目至少是
- 为什么一天当中,气温最高值出现在午后14时?而不是12点?
- 五分之一:六分之一的最简整数比是5:6,这题对的错的?
- 4/9:1/6=x:1/3 解方程 会的大神给我解了它