设向量组a1,a2,a3线性相关,而向量组a2,a3,a4线性无关.证明:(1)a1能由a2,a3表示;(2)a4不能由a1,a2,a3线性表示.
人气:293 ℃ 时间:2020-04-18 05:40:46
解答
(1)因为 a2,a3,a4线性无关
所以 a2,a3 线性无关
又因为 a1,a2,a3线性相关
所以 a1 可由 a2,a3 线性表示
(2) 假如 a4 可由a1,a2,a3线性表示.
由(1)知 a4 可由a2,a3线性表示
这与 a2,a3,a4线性无关矛盾
推荐
- 设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,证明(1):a1能由a2,a3线性表示 (2):a4不能由a1,a2,a3线示
- 原题:向量组a1,a2,a3线性相关,a2,a3,a4线性无关,证明 a4不能由a1,a2,a3线性表示.
- 设向量组a1,a2,a3,a4线性相关,a4不能由a1,a2,a3线性表示,证明:向量组a1a2a3线性相关.
- 若向量组a1,a2,a3,a4线性无关,判断a1+a2,a2+a3,a3+a4,a4+a1线性相关性并证明.
- 设向量组a1a2a3线性相关,a2a3a4线性无关,证明向量a1必可表示为a2,a3,a4的线性组合
- 计算
- 把一个平面恰好分成5份,需要多少条直线?这些直线的位置关系是什么?
- Is this park ( ) we visited during the national day last year?
猜你喜欢