设向量组a1a2a3线性相关,a2a3a4线性无关,证明向量a1必可表示为a2,a3,a4的线性组合
人气:381 ℃ 时间:2020-02-05 13:55:32
解答
证明:
∵a1,a2,a3 线性相关
∴存在不全为0的数b1,b2,b3使
b1a1+b2a2+b3a3=0
又a2,a3,a4 线性无关
∴a2,a3线性无关
∴若b1=0,则b2a2+b3a3=0
∴b2=b3=0
与b1,b2,b3不全为0矛盾
∴b1≠0
∴a1+(b2/b1)a2+(b3/b1)a3=0
即 a1=-(b2/b1)a2-(b3/b1)a3
∴a1可表示为a2,a3,a4的线性组合
证毕
推荐
- 若向量组a1,a2,a3,a4线性无关,判断a1+a2,a2+a3,a3+a4,a4+a1线性相关性并证明.
- 设向量组a1,a2,a3,a4线性相关,a4不能由a1,a2,a3线性表示,证明:向量组a1a2a3线性相关.
- 若向量组a1a2a3线性无关试证b1=a1+a2+a3 ,b2=a1-a2-2a3线性无关
- 向量组a1a2a3线性相关,则向量组a1+a2,a2+a3,a3+a1线性相关
- 设向量组a1,a2,a3线性无关.证明向量组a1+a3,a2+a3,a3也与线性无关.
- -1/2x的平方-3x=1 用配方法解
- 把一块长三十厘米,宽二十五厘米的长方形铁皮的四个角上分别剪去边长为五厘米的小正方形,再把他焊成一个无盖的长方体铁盒,它的容积是多少
- 2.6×302怎样简便运算
猜你喜欢