已知定义域为R函数f(x)=(x-1)^2,g(x)=4(x-1),数列{an},满足a1=2,(an+1-an)g(an)+f(an)=0.
求{an}的通项
人气:494 ℃ 时间:2019-08-19 00:12:11
解答
(an+1-an)g(an)+f(an)=0即
(an+1-an)x4x(an-1)+(an-1)^2=0
化简得:
(an-1)(4an+1 -3an -1)=0
又a1=2 a1-1=1 要满足(an-1)(4an+1 -3an -1)=0恒成立
则 (4an+1 -3an -1)=0 即
(4an+1 -3an -1-3+3)=0
4(an+1 -1) -3(an-1)=0
(an+1 -1)=3(an-1)/4
又a1-1=1
数列(an-1)为等比数列
an-1=(3/4)^(n-1)
所以 an=(3/4)^(n-1)+1
推荐
- 已知函数f(x)=logaX(a>0,且a≠1),若数列:2,f(a1),f(a2),...f(an),2n+4(n>0,且n∈N)为等差数列,求数列{an}(1《m《n,n,m∈N*)的通项公式am
- 已知函数f(x)=(x-1)^2,g(x)=4(x-1),数列An满足a1=2,且(an+1-an)g(an)+f(an)=0
- 已知函数f(x)=x/(3x+1),数列{an}满足a1=1,an+1=f(an)(n∈N*),求证:数列{1/an}是等差数列
- 已知函数f(x)=(2x+3)/3x,数列{an}满足a1=1,an+1=f(1/an),n∈N*.
- 已知函数f(x)=x/x+3,数列an满足a1=1,a(n+1)=f(an) (n属于N+)
- 已知x,y都是正数.若3x+2y=12,求xy的最大值.
- what ideas did you have about college life when you were in high school?
- 算一算如何将12枚硬币放在正方形的周长上,使得每一条边上都有5枚硬币,
猜你喜欢