焦点在x轴上的椭圆,p为椭圆上的任意一点,存在∠F1pF2=90°,求离心率e的取值范围
人气:199 ℃ 时间:2019-08-21 10:05:20
解答
∵∠F1PF2=90°
∴P在以F1F2为直径的圆上
椭圆与圆有焦点则圆的直径在椭圆的短轴和长轴之间
于是:2b≤2c<2a
e∈[√2/2,1)
推荐
- 已知F1,F2是椭圆的两个焦点,P为椭圆上一点,若角F1PF2=90度,求椭圆离心率的取值范围
- 已知F1,F2是椭圆的两焦点,P为椭圆上一点,若∠F1PF2=60°,则离心率e的范围是_.
- F1,F2是椭圆x^2/a+y^2=1的左右焦点,若椭圆上存在一点P,使得∠F1PF2为直角,求椭圆离心率的取值范围
- 椭圆的两焦点为F1F2,如果椭圆上存在点P,满足∠F1PF2=90° 试求此椭圆的离心率的取值范围
- 已知椭圆的两焦点为f1,f2,如果椭圆上存在点P,满足角F1PF2=90°,求椭圆的离心率的取值范围
- 几辆车运货,如果每车装3.5t,那这批货就有2t不能运走;如果每辆车装4t货,那么装完后,还可装1t其他货物
- 个性签名 静守己心,看淡浮华,心若沉浮,浅笑安然.啥意思?
- y=√x-2+√2-x的差+3,求y的x次方的平方根
猜你喜欢