已知F1,F2是椭圆的两焦点,P为椭圆上一点,若∠F1PF2=60°,则离心率e的范围是______.
人气:377 ℃ 时间:2019-08-18 19:13:15
解答
设椭圆方程为x2a2+y2b2=1(a>b>0),|PF1|=m,|PF2|=n. 在△PF1F2中,由余弦定理可知,4c2=m2+n2-2mncos60°.∵m+n=2a,∴m2+n2=(m+n)2-2mn=4a2-2mn,∴4c2=4a2-3mn.即3mn=4a2-4c2. 又mn≤(m+n2)2=a2(当且...
推荐
- 已知F1,F2是椭圆的两焦点,P为椭圆上一点,若∠F1PF2=60°,则离心率e的范围是_.
- 已知F1,F2是椭圆的两焦点,P为椭圆上一点,若∠F1PF2=60°,则离心率e的范围是_.
- 已知F1,F2是椭圆的两焦点,P为椭圆上一点,若∠F1PF2=60°,则离心率e的范围是_.
- 已知F1,F2是椭圆的两个焦点,P为椭圆上一点,若角F1PF2=90度,求椭圆离心率的取值范围
- 已知椭圆的两焦点为f1,f2,如果椭圆上存在点P,满足角F1PF2=90°,求椭圆的离心率的取值范围
- 钢管的直径是100mm,管厚3mm,长1000mm,怎样算它的重量方法
- 要一篇贴近中学生生活的记叙文或散文或夹叙夹议的文章.
- 3,-1,11,-25,83,-241这个数列的规律是什么?
猜你喜欢