>
数学
>
证明一个数可以被7整除,去掉它的末位数字之后,再减去末位数字的2倍,如果结果可以被7整除,
这个数就可以被7整除
这个是什么原理,怎么证明
人气:453 ℃ 时间:2020-10-01 15:29:15
解答
设这个数为10x+y(y为末位数字),去掉末位数字后变为x,再减去末位数字的2倍,就为x-2y;
若x-2y=7n(即为能被7整除)
10x-20y=70n
10x+y-21y=70n
10x+y=70n+21y
10x+y=7(10n+3y)
因为n、y都是整数,所以10n+3y为整数,
即10x+y能被7整除;
是什么原理就不知道了
推荐
证明一个数可以被13整除,去掉它的末位数字之后,再加上末位数字的4倍,如果结果可以被13整除
说明末位数字是0或5的整数一定能被5整除的道理~
能整除7或11或13这3个数的一些数有什么特点?(比如被2整除的数末位能被2整除)
证明:一个三位数减去它的各个数位的数字之和后,必能被9整除.
证明能被11整除的数的特征
accord、treaty 和convention的区别是什么?
用加减法解二元一次方程组:
双缩脲鉴定蛋白质或多肽的存在
猜你喜欢
用同 一种溶液检验CO32- SO42- CI-
新经济政策的实质及作用
请写几句黎明的教室句子
什么诗词中有六
西汉初年为什么要实行休养生息的政策?它有什么作用?好的话加50分!
读了长歌行明白了什么
《白雪歌送武判官归京》这首诗中那一句是比喻句?这句诗中是把什么比作什么?
数学找规律,请帮我解释下
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版