一元二次方程的解 x²-|x|-1=0的解是
当x>0时,原方程化为x²-x=1
x²-x+1/4=5/4
(x-1/2)²=(±√5/2)²
x-1/2=±√5/2
x=1/2±√5/2
x=(1-√5)/2<0(舍去),x=(1+√5)/2
当x<0时,原方程化为x²+x=1
x²+x+1/4=5/4
(x+1/2)²=(±√5/2)²
x+1/2=±√5/2
x=-1/2±√5/2
x=(-1-√5)/2,x=(-1+√5)/2>0(舍去).
综上原方程解为:
x=(1+√5)/2,x=(-1-√5)/2