数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
人气:380 ℃ 时间:2019-10-11 00:16:41
解答
为了避免混淆,我把 下角标放在 内.
首先从 数列本身的基本意义出发
a = S - S
其次 ,从已知a=S(n+2)/n 出发
a= S * (n+1)/(n-1)
因此
S - S = S * (n+1)/(n-1)
移项整理
S = S
推荐
- 已知数列{an}满足a1=1,an+1=Sn+(n+1)(n∈N*),其中Sn为{an}的前n项和, (1)用an表示an+1; (2)证明数列{an+1}是等比数列; (3)求an和Sn.
- 数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=n+2/nSn(n=1,2,3.),证明(1)数列{Sn/n}是等比数列.(2)S(n+1)=4an
- 已知数列{an}的首项a1=5,前n项和为Sn.若Sn+1=2Sn+n+5(n∈N*),则数列{an+1}是等比数列. (1)写出该命题的逆命题; (2)证明原命题是真命题.
- 在数列{an}中,a1=2,an+1=4an-3N+1(1)证明数列{an-N}是等比数列;(2)求数列{an}的前项和Sn.谢谢高...
- 设数列an的前n项和为Sn,已知a1=1,Sn+1=4an+2 (1)设bn=an+1-2an,证明数列{bn}是等比数列 (2)求数列{an}的通
- 以中秋节你是怎么过的内容 写一片初2级别的 英语作文
- 知识的获得单靠书本终究肤浅,还要注意实践.正如陆放翁所言( )
- there is a brid () the tree
猜你喜欢