一个数列{a
n}:当n为奇数时,a
n=5n+1;当n为偶数时,
an=2.求这个数列的前2m项的和(m是正整数).
人气:418 ℃ 时间:2019-12-13 20:37:00
解答
因为a2k+1-a2k-1=[5(2k+1)+1]-[5(2k-1)+1]=10,所以a1,a3,a5,a2m-1是公差为10的等差数列因为a2k+2÷a2k=(22k+22)÷(22k2)=2,所以a2,a4,a6,a2m是公比为2的等比数列从而数列{an}的前2m项和为:S2m=(a1+a...
推荐
猜你喜欢