已知函数|y|=m/|x| (m不等于0,m为常数)和|y|=n|x|(n不等于0,n为常数),且mn>0
(1)求出上述两个函数的交点坐标
(2)顺次链接上述各点,所得到的多边形是什么多边形?证明你的结论
(3)上述多边形能否为正方形?若能,请你找出条件;若不能,请说明理由
人气:261 ℃ 时间:2020-06-13 00:52:28
解答
1
求交点,则m/|x|=n|x|;
x^2=m/n
∵mn>0∴m/n=mn/n^2>0.
∴x=±√(m/n).
此时|y|=m/|x|=n|x|=n·√(m/n)=√(mn).
y=±√(mn).
即(-√(m/n),√(mn));(√(m/n),√(mn));(√(m/n),-√(mn));(-√(m/n),-√(mn))四点.
2
容易看出,顺次链接上述各点,A(-√(m/n),√(mn));B(√(m/n),√(mn));C(√(m/n),-√(mn));D(-√(m/n),-√(mn)),则|AB|=|BC|=|CD|=|DA|=√[(m/n)+(mn)].所以一定是菱形.
//再若m=n,则是正方形.
3
如果是正方形,则对角线相等;半对角线长也相等.即|OA|=|OB|=|OC|=|OD|=√(m/n)=√(mn);
m/n=mn;
∴1/n=n;
n=±1
推荐
- 已知y-m与x+n成正比例,mn是常数.(1)试说明;Y是X的一次函数:(2)如果x=3时,y=5,x=2时y=2.求当x=-3时,y的值
- 已知常数m,n满足mn
- 已知函数f(x)=(nx+1)/(2x+m)(m,n为常数,m*n不等于2),若f(x)*f(1/x)=k
- 设m、n(m≠0)为常数,如果正比例函数y=kx中,自变量x增加m,对应的函数y增加n,那么k的值是( ) A.k=nm B.k=mn C.k=−nm D.k=−mn
- 已知二次函数y=a(x-m)^2-a(x-m)(a,m为常数,a不等于0)求证:不论a与m为何值,改函数图像与x轴总有两个公共点
- 在梯形ABCD中,DC//AB,若∠D=120°,AD=DC,AB=AC,则∠DCB=?
- 怎么样用三笔画出这个图形?一个"回?"字,但内部4个角相连!
- 当n是正整数时(5*3的n次方)的平方*2的n次方—3的n-1次方*6的n加2次方是不是13的倍数
猜你喜欢