已知抛物线的顶点在原点焦点在Y轴正半轴上,点P(m,4)
已知抛物线G的顶点在原点,焦点在y轴正半轴上,点p(m,4)到其焦准线的距离为5,若过G的焦点的直线依次与抛物线G及圆x^2+(y-1)^2=1交于A\C\D\B四点,试证明|AC|*|BD|为定值,
人气:151 ℃ 时间:2019-08-31 03:11:13
解答
抛物线为x^2=4y
焦点与圆心重合,直线斜率不存在时与抛物线只有一个交点,舍
k存在,设直线y-1=kx
设A(x1,y1),B(x2,y2)
利用抛物线定义,到焦点距离=到准线距离,所以AG=y1+1,圆半径为1,所以AC=y1
同理BD=y2,所以|AC|*|BD|=y1*y2
直线抛物线联立方程,消去X,得要关于y的一元二次方程,y1y2=c/a=1
得证
推荐
- 已知抛物线C的顶点在原点,焦点F在x轴正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的中垂线恒过定点Q(6,0),求此抛物线的方程.
- 已知抛物线C的顶点在原点,焦点F在x轴正半轴上,设A、B是抛物线C上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的中垂线恒过定点Q(6,0),求此抛物线的方程.
- 已知顶点在坐标原点,焦点在X轴正半轴的抛物线上有一点A(1/2,m),A点到抛物线焦点的距离为1
- 已知抛物线C的顶点在原点,焦点F在X轴的正半轴上,若抛物线上一动点P到A(2,3/2)、F两点距离之和的最小值为4.
- 已知抛物线的顶点在原点,焦点F在x轴正半轴上,且过点P(2,2),
- 已知三角形ABC,AB=AC,∠A=20°,在AB上取一点D,使AD=BC,则∠BDC等于多少度
- y=sinx+cosx+cos2x的值域是多少
- 六年级上册数学百分数应用题比较
猜你喜欢