在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.
(Ⅰ)求an和bn;
(Ⅱ)已知cn=an+bn求cn的前n项之和Tn.
人气:480 ℃ 时间:2019-08-19 14:25:39
解答
(Ⅰ)设等差数列的公差为d,等比数列的公比为q.
∵a
1=b
1=1,b
4=8,{a
n}的前10项和S
10=55.
∴S
10=10+
d=55;b
4=q
3=8;
解得:d=1,q=2.
所以:a
n=n,b
n=2
n-1.
(Ⅱ)∵a
n=n,b
n=2
n-1,∴c
n=a
n+b
n=n+2
n-1,
∴{c
n}前n项之和T
n=(1+2+3+…+n)+(1+2+4+…+2
n-1)
=
+
=
+2n−1.
推荐
- {an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)
- 设等差数列{an}的前n项和为Sn,{bn}为等比数列,已知a3=3,S10=55,b1=1,b4=8,求数列{an}与{bn}的 通项公式
- 已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10. (1)求数列{an}与{bn}的通项公式; (2)记Tn=a1b1+a2b2+…+anbn,n∈N*,证明:Tn-8=an
- 等差数列{an}的各项均为正整数,a1=3,前n项和为Sn,等比数列{bn}中,b1=1,且b2S2=64,{ban}是公比为64的等比数列.(1)求{an}与{bn};(2)证明:1/S1+1/S2+…+1/Sn<3/4.
- 设{an},{bn}分别为等差数列与等比数列,且a1=b1=4,a4=b4=1,则以下结论正确的是( ) A.a2>b2 B.a3<b3 C.a5>b5 D.a6>b6
- 给下面词语写近、反义词,左边括号填近义词,右边括号填反义词.
- she can t ride a bicycle because she herleg yesterday
- _____ great fun keeping a puppy at home is!A.How B.What a C.How D.What an
猜你喜欢