利用夹逼定理证明:若a1,a2,a3,.,am 为m个正常数,则
lim(n趋向于∞) n次根号下a1^n+a2^n+.+am^n=A 其中A=max{a1,a2,.,am}
利用单调有界数列必存在极限这一收敛准则证明:若x1=根号2,x2=根号下2+根号2,.,xn+1=根号下2+xn(n=1,2,.),则lim(n趋向于∞)xn存在,并求该极限.
人气:209 ℃ 时间:2020-06-24 19:08:22
解答
第一题:将所有的a1,a2,...,am全部用A代替,这样把整个式子放大了,结果为
n次根号下(n*A^n)=n次根号下(n)*A,极限为A
然后将该式缩小,a1,a2,...,am中肯定有一个和A相等的,把这一项留下,其余项删除,这样就缩小了,结果为:n次根号下(A^n)=A
放大与缩小后的极限都是A,这样由夹逼准则,本题得证
第二题,首先要证明极限存在,该数列单增是比较显然的,下面证明有界,
数学归纳法,x1
推荐
猜你喜欢
- 一块长方形的草地的长和宽分别为20米和15米,在它四周外围环绕着宽度相等的小路.已知小路的面积为246平方米,求小路的宽度.
- 电能表
- 中秋节来源 50字
- 1.在玻璃管中放入铁和氧化铁的混合物6.00g,通入足量的纯净一氧化碳并加强热,当氧化铁全部被还原为铁时,最终得到固体残留物5.04g.计算:原混合物中铁单质的质量分数.
- 一个修路队8天修了一条路的3/8,正好是240米,要修的路有多长
- 向饱和NaCl溶液中加入少量KCl固体
- 如图,平行四边形ABCD,E为AD的中点,AC、BE相交于点F,S△EFC=1,则S平行四边形ABCD=
- 用迈组词