用bernoulli不等式证明:2^(1/n)-11)
答完问题有追加分数30分~
人气:251 ℃ 时间:2020-04-07 10:14:40
解答
证明:由bernoulli不等式,有:
(1+x)^r>1+rx对于所有的r>1,x>0成立
现取 x = 1/n,r = n
得:(1+1/n)^n > 1+n*1/n = 2
故 1+1/n > 2^(1/n)
即 2^(1/n)-1 < 1/n
推荐
猜你喜欢
- 作文 我与书的故事600字就行,谢谢(不许重复)
- 英语中喜欢与不喜欢表达法有哪些 越多越好
- 设A为3阶矩阵,|A|=1/2,求|(2A)-1-5A*
- 请问:maintain,stay,keep,hold 的区别,谢谢!
- 一块木板长198分米、宽90分米,要锯成若干个正方形,而且没有剩余,最少可以锯成多少块?
- 体积是100立方厘米的金属块,重7.9N(1)它的密度是多少?是什么金属?(2)当它全部浸没在水中时,受到的浮力是多大>这时如果把铁块挂在弹簧秤上,弹簧的读数是多少?
- 课外文言文 三间茅屋,十里春风
- 心肌细胞的动作电位是什么