直线y=-2x+4与抛物线y^2=2px(p大于0)相交于A,B两点,若向量OA垂直于向量OB=0,求抛物线方程
人气:304 ℃ 时间:2020-05-25 14:28:46
解答
直线y=-2x+4可改写为直线x=(4-y)/2,与抛物线y²=2px联立消x得
y²+py-4p=0
设A(x1,y1)、B(x2,y2),由韦达定理有
y1+y2= -p
y1y2= -4p
向量OA= (x1,y1)、向量OB=(x2,y2)
因为OA⊥OB,所以向量OA*向量OB=0,即
(x1,y1)*(x2,y2)=0,化简得
x1x2+y1y2=0
[(4-y1)/2]*[ (4-y2)/2]+y1y2=0
5y1y2/4-(y1+y2)+4=0
5(-4p)/4-(-p)+4=0
解得p=1
所以抛物线方程为y²=2x
推荐
- 已知抛物线y^2=4x,过点P(0,-2)的直线AB交抛物线于A,B两点 ①若向量OA·向量OB=4,则直线AB的方程为什么
- 若过点P(2,1)的直线l与抛物线y^=4x交于A,B两点,且向量OP=1/2(向量OA+向量OB),则直线l的方程为
- 已知过点P(0,-2)的直线l交抛物线Y^2=4X于A,B两点,若向量OA*向量OB=4,求l方程
- 以O为坐标原点,抛物线y^2=2x与过其焦点的直线交于A、B两点,则向量OA乘向量OB等于
- 抛物线y^2=2x与过焦点F的直线交于A,B两点求向量OA*OB(O为原点)
- 为什么1个水分子又2个氢原子和1个氧原子构成?
- 写出分别能被2,3,5整除的数的特征,写出能同时被2,3,3,5,2,5 2,3,5,整除的数的特征
- 是的,我是一叶不系之舟,曾经那样安恬地依偎在未名湖的臂抱里,在我的心无时无刻不在向往大海的波涛.
猜你喜欢