> 数学 >
如图,在正方形ABCD的对角线AC上取点E,使得∠CDE=15°,连接BE.延长BE到F,连接CF,使得CF=BC.

(1)求证:DE=BE;
(2)求证:EF=CE+DE.
人气:126 ℃ 时间:2020-07-01 03:58:03
解答
证明:(1)∵四边形ABCD是正方形,
∴AB=AD,∠ABC=∠ADC=90°,∠BAC=∠DAC=∠ACB=∠ACD=45°.
∵在△ABE和△ADE中,
AB=AD
∠BAC=∠DAC
AE=AE

∴△ABE≌△ADE(SAS),
∴BE=DE.
(2)在EF上取一点G,使EG=EC,连结CG,
∵△ABE≌△ADE,
∴∠ABE=∠ADE.
∴∠CBE=∠CDE,
∵BC=CF,
∴∠CBE=∠F,
∴∠CBE=∠CDE=∠F.
∵∠CDE=15°,
∴∠CBE=15°,
∴∠CEG=60°.
∵CE=GE,
∴△CEG是等边三角形.
∴∠CGE=60°,CE=GC,
∴∠GCF=45°,
∴∠ECD=GCF.
∵在△DEC和△FGC中,
CE=GC
∠ECD=GCF
CD=CF

∴△DEC≌△FGC(SAS),
∴DE=GF.
∵EF=EG+GF,
∴EF=CE+ED.
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版