设F1,F2分别是椭圆X^2/a+Y^2/b^2=1(a》b》0)的左、右焦点,若在其右准线上存在P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是多少
人气:200 ℃ 时间:2019-08-19 23:47:56
解答
右准线方程为:x=a^2/c,设准线与x轴的交点为F,在准线上取一点P使得|PF2|=|F1F2|,则线段PF1的中垂线必过点F2,即
|PF2|=|F1F2|>F2F
2c>a^2/c-c
3c^2>a^2
c^2/a^2>1/3
e=c/a>√3/3
离心率的取值范围是√3/3
推荐
- 设F1、F2分别为椭圆x2/a2+y2/b2=1的左右焦点,若在直线x=a2/c上存在P使线段PF1的中垂线过点F2,则
- F1,F2是椭圆x^2/2+y^2=1的左右焦点,直线L:x=-1/2 设A,B是C上的两个动点,线段AB的中垂线与C交与P,Q两点
- 设F1、F2分别为椭圆x2/a2+y2/b2=1的左右焦点,若在椭圆c上存在P使线段PF1的中垂线过点F2,则
- 设F1 F2分别是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,若在其右准线上存在点P,使PF1的中垂线过点F2,求
- 椭圆x^2/12+y^2/3=1的左右焦点分别为F1,F2.点P在椭圆上,若果线段PF1的中点在y轴上,那么PF1是PF2的几倍
- 已知幂函数y=(m^2-5m+7)x^(m^2-6)在区间(0,+∞)上单调递增,则实数m的值是多少 3,
- 高一文言文句式解析题.
- 8,1,4,5算24点,
猜你喜欢