在1到1998的自然数中,能被2整除,但不能被3和7整除的数有多少个?
人气:144 ℃ 时间:2019-08-18 00:13:07
解答
1~1998中能被2整除的有:1998÷2=999(个),
1~1998中能被(2×3)整除的有:1998÷(2×3)=333(个),
1~1998中能被(2×7)整除的有1998÷(2×7)≈142(个),
1~1998中能被(2×3×7)整除的有1998÷(2×3×7)≈47(个),
所以能被2整除、但不能被3和7整除的就是999-333-142+47=571(个).
答:能被2整除,但不能被3或7整除的数有571个.
推荐
猜你喜欢
- 一批货,大车要运16辆,小车要运48辆才能运完.大车比小车每车多运4吨.请问这批货有多少?
- 《蒙娜丽莎之约》练习题
- “重温老师给你留下的难忘回忆,写信给老师”的作文怎么写
- 依法纳税是每个公民应尽的义务,小芳的妈妈上个月的工资总额是2000元,按照个人所得税法规定,超过2000元
- 齐次方程组x1+x2=0,x2-x4=0,基础解系为k1(0,0,1,0)^T+k2(-1,1,0,1)^T,问第一个解向量 是怎么得来的
- 大地怎么造句
- 为什么一般情况下,弱电解质浓度越大,电离度小?特殊情况是指?
- 类似于日日行,不怕千万里;常常做,不怕千万事的名句?