求曲线 x=sint,y=cost.在t=π/4处 的 切线方程与法线方程.
人气:278 ℃ 时间:2019-12-18 23:54:06
解答
直接求导,根据导数也就是微商的定义y'=dy/dx=(dy/dt)/(dx/dt)=-sint/cost=-tgt
当t=Pi/4时,y'=-tgt=-1,并且曲线过点(sqrt2/2,sqrt2/2)注:sqrt2为根号2
根据点斜式求得切线方程y=-x,同理,因为法线和切线垂直,所以斜率为1,所以法线方程y=x
推荐
- 求曲线x=t-sint,y=1-cost,z=4sin(t/2)在点(∏/2-1,1,2√2)处的切线方程和法平面方程
- 求曲线x=t-sint,y=1-cost,z=4sin(t/2)在点(π/2-1,1,2√2)处的切线及法平面方程,求详解.思路也可以.是否用t作联系x.y.
- 曲线方程 x=t+1+sint y=t+cost 求曲线在x=1处的切线方程 (要过程 谢谢)
- 求曲线x=sint+t,y=cost,z=e^t-1 在点(0 1 0)处的切线方程与法平面方程
- 求曲线x=t(sint-t),y=t-cost,z=t平方+1在t=0时的切线方程是什么?
- 哪一个食谱更健康?中译英
- a与b互质,均是c的因数,请证明a与b的乘积ab也是c的因数?
- 南极冰川现状如何
猜你喜欢