如何判断无理数的无理数次幂为无理数
设根号2的根号2次幂=q/p,(q,p)=1,则q>1,将q经行质因数分解,则一定存在M使q的M次方根为无理数,如何证明,q/p的M次方根也为无理数?
人气:486 ℃ 时间:2019-12-12 21:40:04
解答
“无理数的无理次幂为无理数”这句话明显是错的.
证明如下:设a、b均为无理数,按照上面的结论,那么必有:a^b=c为无理数--------------------①
对于任意的有理数d,那么必然有d^(1/b)为有理数,否则[d^(1/b)]^b=d为无理数,矛盾
所以我们由①可以得出结论:
如果a为有理数,b为无理数,那么a^b=d为有理数----------------------------------------②
做一个函数:f(x)=2^x-1,定义域为(1,+∞)
那么对应的值域也是(1,+∞),且是严格单调递增的
按照②的结论,当x为无理数的时候,f(x)为有理数!
也就是(1,+∞)上的无理数都能够在(1,+∞)上找到一个唯一的映射
这是不可能的,因为无理数的基数比有理数的基数大.这是集合论的结论,通
俗点讲就是说无理数比有理数多.
矛盾,所以①不成立.
证明的思路不一样.
推荐
猜你喜欢
- ( )地飞翔 搭配词
- 某工厂实际每天烧煤4又5分之1吨,改进烧煤锅炉后,比原来每天烧煤节约6分之1,原来每天烧煤多少吨?
- 如何译the ability to wirk with and lead others is weakened when we lose
- 加工一批零件,甲单独做12天完成,乙单独做18天完成.甲乙两人先合作了4天,剩下的由甲单独做,需要多少天可以完成?
- Was not you that I saw last night at the concert?
- 顶角为三十度的等腰三角形,若腰长为2,则腰上的高( ),三角形面积是( ).
- 在等差数列{an}中,有3(a3+a5)+2(a7+a10+a13)=48,则此数列的前13项和为( ) A.24 B.39 C.52 D.104
- 直接宾语变间接宾语