设A是n阶正定矩阵,AB是n阶实对称矩阵,证明AB正定的充要条件是B的特征值全大于零
人气:231 ℃ 时间:2019-10-19 07:43:56
解答
因为A正定,所以存在可逆阵C,使得A=C^TC
而 AB=C^TCB=C^T(CBC^(-1))C
所以 AB 与 CBC^-1 合同.
所以有
AB正定
CBC^-1 正定
CBC^-1 的特征值都大于0
B 的特征值都大于0
推荐
- 设A为m阶实对称矩阵且正定,B为m×n矩阵,证明:BTAB为正定矩阵的充要条件是rankB=n
- n阶实对称矩阵A正定的充要条件是( ).
- A,B都为n阶正定矩阵,证明:AB是正定矩阵的充分必要条件是AB=BA.
- 设A是n阶实对称矩阵,证明A是正定矩阵的充分必要条件是A的特征值都大于0
- 设A,B为两个n阶正定矩阵,证明:AB为正定矩阵的充要条件是AB=BA.
- 已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a,b均为整数,则a+3b=
- 我是新高一学生,对于v-t(速度和时间)图像怎么去看速度的方向和加速度的方向,还有x-t
- (-30/7)/(3/1-5/3+3/10) 负30分之7除以三分之一减五分之三加十分之三.
猜你喜欢