由已知,当n≥2时,x∈[an-1,bn-1],f(x)的值域是[an,bn],
∴an=f(an-1)=an-1+b,bn=f(bn-1)=bn-1+b,
∴{an}、{bn}都是公差为b的等差数列.
∵a1=0,b1=1,
∴an=(n-1)b,bn=(n-1)b+1;
(2)∵a>0,a≠1,
∴f(x)=ax+b在R上也是增函数,
由已知有bn=f(bn-1)=abn-1+b,即bn=abn-1+b(n≥2),
∴
bn |
bn−1 |
b |
bn−1 |
若{bn}是公比不为1的等比数列,则
b |
bn−1 |
(3)∵a<0,∴f(x)=ax+b在R上是减函数,
由已知可得,bn=f(an-1)=a•an-1+b,an=f(bn-1)=a•bn-1+b,
∴bn-an=-a(bn-1-an-1)(n≥2),
∴{bn-an}是以1为首项,-a为公比的等比数列,
∴bn-an=(-a)n-1,
∴Tn-Sn=(b1-a1)+(b2-a2)+…+(bn-an)=
|
于是,(T1+T2+…+T2000)-(S1+S2+…+S2000)
=(T1-S1)+(T2-S2)+…+(T2000-S2000)
=
|