抛物线y=-x2+4x+5中,令y=0,则-x2+4x+5=0,即-(x-5)(x+1)=0,
解得x=5,x=-1;
∴A(-1,0),B(5,0);
令x=0,得y=5,
∴D(5,0).
∵点C是抛物线的顶点,
∴C(-
4 |
2×(−1) |
4×(−1)×5−42 |
4×(−1) |
则AE=3,OD=5,CE=9,OB=5
∴S四边形ABCD=S△ADE+S△CDE+S△CBE=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
4 |
2×(−1) |
4×(−1)×5−42 |
4×(−1) |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |