> 数学 >
反证法证明题
实数a,b,c,d满足a+b=c+d=1,ac+bd>1,求证:a,b,c,d中至少有一个是负数
人气:463 ℃ 时间:2020-05-08 13:41:36
解答
证:假设a,b,c,d中没有负数,即a>=0,b>=0,c>=0,d>=0.
显然由假设可得,ad>=0,bc>=0,即ad+bc>=0…………(*).
由a+b=1,c+d=1,将两式相乘,可得
ac+ad+bc+bd=1,
即ad+bc=1-(ac+bd),
因为ac+bd>1,
所以1-(ac+bd)<0,
即ad+bc<0,这与(*)式矛盾!
故假设不成立,
所以a,b,c,d中至少有一个是负数.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版