已知三角形ABC中,内角A,B,C 的对边的边长分别为a,b,c,且bcosC= (2a-c)cosB.(1)求角B的大小;(2)...
已知三角形ABC中,内角A,B,C 的对边的边长分别为a,b,c,且bcosC= (2a-c)cosB.(1)求角B的大小;(2)若y=cos^2A+cos^2C,求的取值范围.
人气:278 ℃ 时间:2019-11-21 12:22:15
解答
bcosC=(2a-c)cosB
正弦定理得:
2RsinBcosC=(4RsinA-2RsinC)cosB
sinBcosC+sinCcosB=2sinAcosB
sin(B+C)=2sinAcosB
sinA=2sinAcosB
cosB=1/2
得B=60°
推荐
- 三角形ABC中,角ABC的对边分别为abc,且(2a-c)cosb=bcosc.求角B的大小
- 在△ABC中,a,b,c分别是A,B,C的对边,且满足(2a-c)cosB=bcosC. (Ⅰ)求角B的大小; (Ⅱ)若b=7,a+c=4,求△ABC的面积.
- 已知三角形ABC中,内角A,B,C 的对边的边长分别为a,b,c,且bcosC= (2a-c)cosB.(1)求角B的大小;(2)求 2sinA-sinC的取值范围.
- 设△ABC的内角A,B,C的对边分别为a,b,c,且bcosC=(2a-c)cosB. (Ⅰ)求B的大小; (Ⅱ)若b=3,则a+c的最大值.
- 在三角形ABC中,内角A,B,C所对的边长分别为a,b.c,且bcosC=(2a-c)cosB 1)求角B的大小 2)求的sinA+sinC取
- 春风和煦的诗句
- 甲、乙两人在同一条路上前进,甲每小时5km,乙每小时行7km,甲于中午12点时经过A地,乙于下午2点经过A地,
- x:8=0.2::1/2过程啊啊啊啊啊啊啊啊啊啊啊
猜你喜欢