>
数学
>
已知如图:在梯形ABCD中,AB∥DC,点E、F分别是两腰AD、BC的中点.
证明:(1)EF∥AB∥DC;
(2)EF=
1
2
(AB+DC).
人气:135 ℃ 时间:2019-08-18 14:23:36
解答
连接AF并延长交BC于点G.
∵AD∥BC
∴∠DAF=∠G,
在△ADF和△GCF中,
∠DAF=∠G
∠DFA=∠CFG
DF=FC
∴△ADF≌△GCF,
∴AF=FG,AD=CG.
又∵AE=EB,
∴EF∥BG,EF=
1
2
BG,
即EF∥AD∥BC,EF=
1
2
(AD+BC).
推荐
如图,在梯形ABCD中AD//BC,E为DC的中点,EF垂直AB于点F,说明梯形ABCD的面积=EF乘AB
在梯形ABCD中,AD∥BC,E是DC的中点,EF⊥AB于点F,求证:S梯形ABCD=AB•EF.
如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E为AB中点,EF∥DC交BC于点F,求EF的长.
已知:如图,在梯形ABCD中,AD∥BC,E、F分别为边AB、DC的中点,CG∥DE,交EF的延长线于点G. (1)求证:四边形DECG是平行四边形; (2)当ED平分∠ADC时,求证:四边形DECG是矩形.
已知如图梯形ABCD中AD//BCE是AB的中点EF//DC交BC于点F
怎样说明某一混合溶液中有Na2CO3&NaOH?
杨柳树是一年四季都绿的吗?
什么动物为人类消灭害虫
猜你喜欢
故事填空
天气的变化跟什么有关?
怎么腐蚀铝片?
怎么判断哪些物质难电离啊,
谁晓得小学二年级数学上册第六单元测试题急、急啊,
等腰三角形的周长是25cm,一腰上的中线将周长分为3:2两部分,则此三角形的底边长为 _ cm或 _ cm.
named 和be named用法什么区别啊!
已知tan=-1/3,求3sin^2+2sinacosa-cos^2a的值
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版