在rt△ABC中,∠ABC=90°AB=2,BC=1,两顶点A和B分别在直角坐标系x、y轴的正半轴上滑动,连结OC,C在一象限
求OC最大值 (初中的方法怎么解,可以的话,我也希望学学高中的方法)
人气:425 ℃ 时间:2019-11-21 06:28:14
解答
取AB的中点D.连接OD、CD
∵∠AOB=90°,AB=2
∴OD=1
∵∠ACB=90°
∴CD=1
∴OD+CD=2
当C、D、O三点共线时,OC最大
∴OC的最大值为2存在三点共线的可能?哪三点C D O可能啊,sin(2θ+45°)=1时,CDO一条线
推荐
- 在rt△ABC中,∠ABC=90°AB=2,BC=1,两顶点A和B分别在直角坐标系x、y轴的正半轴上滑动,连结OC,C在一象限
- 如图,已知边长为2的正三角形ABC,两顶点A,B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC长的最大值是_.
- 如图,已知边长为2的正三角形ABC,两顶点A,B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC长的最大值是_.
- 在平面直角坐标系中,RT△ABC的斜边AB在x轴上,顶点C在y轴的负半轴上,OA比OC=3比4,点P在线段OC上,且PO、PC的长(PO小于PC)是方程x方-12x+27=0的根.
- 在平面直角坐标系中,将一块腰长为根号5的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C
- 关于湖泊的好词
- 英语翻译
- 请将英语一般将来时和一般过去时的概念,结构,用法,各种句型以及动词的变化规则总结一下,详细一些的.
猜你喜欢