f(x)=x²-a㏑x在(1,2】上增,g(x)=x-a√x在(0,1)上减,求f(x),g(x)表达式
求证x>0时,f(x)-g(x)=x²-2x+3有唯一解
人气:217 ℃ 时间:2020-06-23 13:45:58
解答
∵f(x)=x²-a㏑x在(1,2]上增,
∴f'(x)=2x-a/x =(2x²-a)/x 在(1,2]上恒大于0
∴2x²-a在(1,2]上恒大于0
∴a≤ (2x²)在(1,2]上的最小值
即a≤2
同理,∵g(x)=x-a√x在(0,1)上减
∴g'(x)=1-a/(2√x) =[(2√x)-a]/(2√x)在(0,1)上恒小于0
∴(2√x)-a在(0,1)上恒小于0
∴a≥(2√x)在(0,1)上的最大值
即a≥2
要同时满足a≥2和a≤2,只能是a=2
∴f(x)=x²-2㏑x,g(x)=x-2√x
第二问:
证明:设h(x)=f(x)-g(x)-(x²-2x+3)=x-2lnx+2√x-3
则题目可以转化为证明 x>0时,h(x)=0有唯一解
对h(x)求导,得h'(x)=1-2/x+1/√x=(√x+2)(√x-1)/x
∴当x>1时,h'(x)>0,h(x)递增
当x<1时,h'(x)<0,h(x)递减
又h(1)=0,
∴当x>1时,h(x)>h(1)=0,
当0h(1)=0,
∴x>0时,h(x)与x轴只有一个交点为x=1
即x>0时,h(x)=0有唯一解 x=1
∴x>0时,f(x)-g(x)=x²-2x+3有唯一解 x=1
推荐
- f(x)=x^2-alnx 在(1,2]是增函数 g(x)=x-a乘根号x在(0,1)为减函数,求f(x),g(x)表达式
- 设函数f(x)=x^2-a㏑x在(1,2]是递增函数,g(x)=x-a√x (0,1)为减函数1.求 f(x) ,g(x)的表达式.
- 已知函数f(x)=(1+x)-aln(1+x)²;在(-2,-1)上是增函数,在(-∞,-2)上是减函数 求f(x)的表达式
- 设a>0,a≠1,则“函数f(x)=ax在R上是减函数”,是“函数g(x)=(2-a)x3在R上是增函数”的_条件.(在“充分不必要条件”、“必要不充分”、“充分必要”、“既不充分有不必要”中
- 已知函数f(x)=x^2-alnx在(1,2]是增函数,g(x)=x-a『x在(0,1)为减函数
- 把一个分数的分子扩大到原来的四倍,分母缩小到原来的四倍,分数的大小发生了什么变化?
- 若b=根号下1-2a+根号下2a-1-2分之一,则代数式(a-b)2013次方的值为
- 水蒸气的沸点是多少
猜你喜欢