| ||
| 10 |
2
| ||
| 5 |
因为α为锐角,则sinα>0,从而sinα=
| 1−cos2α |
7
| ||
| 10 |
同理可得sinβ=
| 1−cos2β |
| ||
| 5 |
因此tanα=7,tanβ=
| 1 |
| 2 |
所以tan(α+β)=
| tanα+tanβ |
| 1−tanα•tanβ |
7+
| ||
1−7×
|
(2)tan(α+2β)=tan[(α+β)+β]=
−3+
| ||
1−(−3)×
|
又0<α<
| π |
| 2 |
| π |
| 2 |
| 3π |
| 2 |
所以由tan(α+2β)=-1得α+2β=
| 3π |
| 4 |
| ||
| 10 |
2
| ||
| 5 |

| ||
| 10 |
2
| ||
| 5 |
| 1−cos2α |
7
| ||
| 10 |
| 1−cos2β |
| ||
| 5 |
| 1 |
| 2 |
| tanα+tanβ |
| 1−tanα•tanβ |
7+
| ||
1−7×
|
−3+
| ||
1−(−3)×
|
| π |
| 2 |
| π |
| 2 |
| 3π |
| 2 |
| 3π |
| 4 |