M,N分别是平行四边形ABCD的边BC,CD上的点,且MN‖BD则△ADN的面积和△ABM的面积大小关系是怎样的?说明理由
人气:496 ℃ 时间:2019-12-03 08:08:12
解答
两个三角形面积相等,
方法一:
假设M、N都是BC、CD的中点,符合MN//BD的条件;设AD边长为a,BC边长为b;垂直AD边的高为h1,垂直BC边的高为h2,则平行四边形的面积为S=a*h1或者S=b*h2;即有a*h1=b*h2;因为M、N分别为中点,则有NC=0.5CD=0.5BC=0.5b;CM=0.5AD=0.5a;由此得四边形ABCN的面积S1=0.75b*h2;四边形AMCD的面积S2=0.75a*h1;即S1=S2;又因为三角形ABM的面积S3=S-S2;
三角形ADN的面积S4=S-S1;所以S3=S4;即三角形ABM和三角形ADN面积相等.
方法二:
假设M、N两点分别无限接近B、D两点;即MN无限接近BD,则三角形ADN和三角形ABM的面积都相等,接近0;(或者设想两点无限接近C点,则两个三角形的面积接近于平行四边形的一半,即相等)
推荐
- M,N分别为平行四边形ABCD的BC,CD边上的点,且MN平行于BD,证S三角形ADN=S三角形ABM
- 在平行四边形ABCD中,MN平行BD交DC于N,交BC于M,比较三角形AND与三角形ABM的面积关系,说明理由
- 如图,M、N分别是平行四边形ABCD的边AD、CD上的点,且MN∥AC,则△ABM和△BCN的面积有什么关系?试说明理由.
- M.N是平行四边ABCD的边BC和CD上的点,MN平行BD,三角形ADN和三角形ABM的面积大小关系,说明理由
- M,N分别是平行四边形ABCD的边AD,CD上的点,且MN平行AC,△ABM和△BCN的面积有什么关系?
- 一个等腰三角形的顶角是80°,沿着底边对折后,得到一个直角三角形,这个直角三角形两个锐角各是多少度?
- 某工厂现在年产值是150万元,如果每增加1000元的投资,一年可增加2500元的产值,设新增加的投资额为x万元,总产值为y万元,那么x,y的满足的方程为 _ .
- 求实数M的取值范围,使直线X^2-根号3+m=a与圆x^2+y^2-6x+5=0分别满足(1)相交(2)相切(3)相离
猜你喜欢