椭圆x^2/a^2+y^2/b^2=1(焦点在x轴)与双曲线x^2/m^2-y^2/n^2=1有公共的焦点F1,F2
P是它们的一个交点,求△F1PF2面积
A.amB.anC.bnD.bm
人气:299 ℃ 时间:2019-11-24 14:36:39
解答
PF1+PF2=2a
PF1-PF2=2m
PF1=m+a PF2=a-m F1F2=2c a^2-b^2=m^2+n^2=c^2
cos F1PF2=[(a-m)^2+(a+m)^2-4c^2]/2(a^2-m^2)
=[(2a^2-2c^2) +(2m^2-2c^2)]/2(a^2-m^2)
=(b^2-n^2)/(b^2+n^2)
S△F1PF2=1/2 (m+a)(a-m)sin F1PF2=1/2 (b^2+n^2)√[1-(b^2-n^2)^2/(b^2+n^2)^2]=1/2√[(b^2+n^2)^2-(b^2-n^2)^2]=1/2 √(4b^2n^2)=bn
推荐
- 中心在原点,焦点在x轴上的一个椭圆与一双曲线有共同的焦点F1.F2,且|F1F2|=6√13 ,椭圆的长半轴与双曲线
- 数学问题:设椭圆x^2/6+y^2/2=1和双曲线(x^2/3)-y^2=1的公共焦点分别是F1,F2
- 设椭圆C与双曲线D有共同的焦点F1(-4,0),F2(4,0),并且椭圆的长轴长是双曲线实轴的长的2倍,试求椭圆C与双曲线D交点的轨迹方程.
- 已知中心在原点,焦点在X轴上的椭圆与双曲线有共同的焦点F1,F2,且/F1F2/=2倍根号3,又椭圆的半长轴长与双曲线的半实轴长之差等于4,且它们的离心率之比为3:7
- 已知椭圆x^2/m +y^2/n=1与双曲线x^2/p-y^2/q=1(m,n,p,q∈R+)有共同的焦点F1、F2,P是椭圆和双曲线的一个交点,则|PF1|*|PF2|=
- 4Na+O2=2Na2O反应和2Na+O2=Na2o2反应哪个是吸热反应哪个是放热反应?能说明理由吗?
- 16寸和40寸的数码照片分别是多少厘米啊?
- 你可以向他解释清楚是他理解你 用so.that怎么翻译,谢谢
猜你喜欢