已知函数f(x)是定义域在R上的偶函数,且在区间(-∞,0)上单调递减,求满足f(x2+2x+3)>f(-x2-4x-5)的x的集合.
人气:144 ℃ 时间:2019-08-21 01:13:57
解答
因为f(x)为R上的偶函数,所以f(x2+2x+3)=f(-x2-2x-3),则f(x2+2x+3)>f(-x2-4x-5)即为f(-x2-2x-3)>f(-x2-4x-5).又-x2-2x-3<0,-x2-4x-5<0,且f(x)在区间(-∞,0)上单调递减,所以-x2-2x-3<-x...
推荐
猜你喜欢
- do you like apples,bananas,tomatoes or oranges?do you like apples,or bananas,or tomatoes,or...
- 一、用介词填空 7、You can buy this CD ___ a very good price —only 10 yuan.
- The doctor insisted that the patient should be operated on at once帮忙翻译下,
- “地上河”属于黄河的那一段?位于哪两个省级行政区划单位境内?
- 六年级学的分数除法应用题
- _______(adj.)---that you often see or that often happens
- 燕然未勒归无计中的勒是什么含义
- 已知集合A={1,2}B={-1,0,1}C={0,1}求(AUB)UC?怎么算